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Abstract—This paper presents a comparative study of 
NavMesh-based pathfinding algorithms within the context of 
Counter-Strike: Global Offensive (CS:GO) Artificial Intelligence 
(AI). The primary objective is to analyze the computational 
complexity and efficiency of various pathfinding algorithms when 
applied to game environments represented by navigation meshes. 
Pathfinding is a critical component in game AI, enabling 
non-player characters (NPCs) to navigate virtual worlds 
intelligently and realistically. Given the intricate and dynamic 
nature of CS:GO maps, NavMesh has become a widely adopted 
solution for defining walkable areas and obstacles. This research 
will delve into the performance characteristics of algorithms such 
as A*, Theta*, and Jump Point Search (JPS) when integrated 
with NavMesh structures in a CS:GO-like environment. Through 
empirical evaluation and theoretical analysis, this study aims to 
provide insights into the practical implications of these 
algorithms for game development, particularly concerning 
real-time performance and resource utilization.  

Keywords—Pathfinding; NavMesh; Counter-Strike: Global 
Offensive; AI; complexity; efficiency. 

I.  INTRODUCTION (HEADING 1) 
Pathfinding is a fundamental challenge in artificial 

intelligence (AI) for video games, crucial for enabling 
non-player characters (NPCs) to navigate virtual environments 
realistically and intelligently. In complex 3D game worlds, 
such as those found in first-person shooter (FPS) games like 
Counter-Strike: Global Offensive (CS:GO), efficient and 
robust pathfinding is paramount for creating believable and 
challenging AI opponents. Traditional grid-based pathfinding 
can be computationally expensive and suffer from limited 
fidelity in representing intricate geometries. Consequently, 
navigation meshes (NavMeshes) have emerged as a preferred 
solution for abstracting walkable spaces in modern game 
engines. 

 A NavMesh represents the navigable areas of a game 
world as a collection of interconnected convex polygons. This 
abstract representation simplifies the pathfinding problem by 
allowing algorithms to operate on a graph of polygons rather 
than individual grid cells or vertices, leading to significant 
performance improvements and more natural-looking 
character movement. The efficiency of the pathfinding process 
directly impacts game performance, especially when 

numerous AI agents are simultaneously seeking paths in a 
dynamic environment. 

 This paper conducts a comparative study of 
NavMesh-based pathfinding algorithms, specifically focusing 
on their application within a CS:GO AI context. The study 
will analyze the complexity and efficiency of prominent 
algorithms, including A* (A-star), Theta*, and Jump Point 
Search (JPS). While A* is a well-established and widely used 
algorithm, Theta* offers improvements in path quality by 
allowing "any-angle" paths, and JPS provides significant 
speedups in uniform cost grids. Their performance on 
NavMesh structures, which are inherently irregular, warrants 
detailed investigation. 

The primary objectives of this research are: 

1. To review the theoretical foundations of NavMesh 
construction and the selected pathfinding algorithms 
(A*, Theta*, JPS). 

2. To implement and adapt these algorithms for 
NavMesh navigation in a simulated CS:GO 
environment. 

3. To empirically evaluate the computational 
complexity (e.g., number of nodes expanded) and 
efficiency (e.g., execution time) of each algorithm 
across various CS:GO map layouts. 

4. To compare the path quality generated by each 
algorithm, considering factors like path length and 
smoothness. 

5. To discuss the practical implications of the findings 
for game developers in optimizing AI navigation for 
FPS games. 

 This study aims to provide valuable insights into selecting 
the most appropriate NavMesh-based pathfinding algorithm 
for specific game development requirements, balancing 
between path quality, computational load, and real-time 
performance. 
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II. THEORETICAL BACKGROUND 
 This section delves into the fundamental concepts of 
NavMeshes and the pathfinding algorithms selected for this 
comparative study. 

A. Graphs 
At its core, pathfinding in computer games, particularly 
with NavMeshes, is a problem of graph traversal. A graph 
is a mathematical structure used to model pairwise 
relations between objects, where these objects are called 
vertices (or nodes) and the relations between them are 
called edges (or links). In the context of NavMeshes, the 
polygons represent the vertices, and the shared boundaries 
(portals) between adjacent polygons represent the edges. 
This forms an adjacency graph, where each edge can have 
an associated weight representing the cost of traversing 
that edge (e.g., distance between polygon centers, or 
traversal cost through a portal). 

Graphs can be categorized by their properties: 

● Directed vs. Undirected: In an undirected graph, 
edges have no direction, meaning if a path exists 
from A to B, a path also exists from B to A. In a 
directed graph, edges have a specific direction, 
meaning a path from A to B does not necessarily 
imply a path from B to A. For NavMeshes in CS:GO, 
movement is generally bidirectional, making it an 
undirected graph, though specific one-way passages 
could introduce directed edges. 

● Weighted vs. Unweighted: In a weighted graph, 
each edge has a numerical value (weight) associated 
with it, typically representing cost, distance, or time. 
Pathfinding algorithms like A* rely on these weights 
to find the "shortest" or "lowest cost" path. 
NavMeshes are typically weighted graphs, where 
edge weights correspond to the Euclidean distance 
between polygon centroids or portal midpoints. 

● Cyclic vs. Acyclic: A cyclic graph contains at least 
one cycle (a path that starts and ends at the same 
vertex). A directed acyclic graph (DAG) is a 
directed graph with no cycles. Most game navigation 
graphs are cyclic, as characters can typically return to 
previously visited areas. 

Pathfinding algorithms, such as A*, Theta*, and JPS, 
fundamentally operates by searching thirs graph structure. 
They systematically explore the vertices and edges to find an 
optimal (or near-optimal) sequence of edges from a start 
vertex to a target vertex, minimizing the cumulative edge 
weights along the path. The efficiency of these algorithms is 
heavily dependent on the characteristics of the graph (e.g., 
density of connections, number of nodes) and the effectiveness 
of their search strategies. 

 

B. Algorithmic Effeciency and Complexity 
The efficiency of a pathfinding algorithm is a critical concern 
in game development, as AI must compute paths in real-time 
without causing noticeable performance drops. Algorithmic 
efficiency is typically measured using Big O notation (O(n)), 
which describes the upper bound on the growth rate of an 
algorithm's running time or space requirements as the input 
size (n) grows. This provides a theoretical worst-case 
performance estimate that is independent of specific hardware. 

For graph algorithms, the input size n often relates to the 
number of vertices (V) and edges (E) in the graph. Common 
complexities include: 

● O(1): Constant time. 
● O(log n): Logarithmic time. 
● O(n): Linear time. 
● O(n log n): Linearithmic time. 
● O(n^2): Quadratic time. 
● O(2^n): Exponential time (generally impractical for 

large n). 

The complexity of pathfinding algorithms on a graph typically 
depends on the data structure used for the open list (priority 
queue) and the number of nodes visited. 

● A* Algorithm Complexity: The worst-case time 
complexity for A* on a graph can be O(E log V) or 
O(E log E) when using a binary heap for the priority 
queue, where V is the number of vertices (polygons 
in NavMesh) and E is the number of edges (portals). 
In dense graphs, this can approach O(V^2). 
However, with an effective and admissible heuristic, 
A* performance is often much better in practice, 
expanding only a fraction of the total nodes. The 
space complexity is O(V) in the worst case, as it may 
need to store all visited nodes. 

● Theta* Algorithm Complexity: Theta* inherits 
much of its complexity from A*. While its worst-case 
complexity remains similar to A* (potentially O(E 
log V) or O(V^2)), the additional line-of-sight 
checks introduce a constant factor overhead. The 
number of line-of-sight checks can be substantial in 
dense or cluttered environments, impacting practical 
performance. The actual speed depends heavily on 
the efficiency of the line-of-sight test and the sparsity 
of obstacles. Its advantage lies in path quality rather 
than raw speed. 

● Jump Point Search (JPS) Algorithm Complexity: 
JPS is designed to achieve significant speedups on 
uniform grids, often reducing complexity from O(V) 
to O(J), where J is the number of jump points, which 
is often much smaller than V. For an N x M grid, its 
complexity is roughly O(N+M) in many practical 
scenarios [7]. However, adapting JPS to irregular 
NavMeshes significantly complicates its complexity 
analysis. The efficiency gain in NavMesh-based JPS 

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 
 



(or its hybrid variants) depends on how effectively 
the "jump point" concept can be applied across 
irregular polygon boundaries. The overhead of 
geometric checks to find valid jump points within and 
between polygons can offset some of its theoretical 
grid-based advantages. Therefore, empirical analysis 
is crucial to ascertain its true efficiency in a NavMesh 
context. 

Understanding these complexities is vital for selecting 
algorithms that can meet the real-time performance demands 
of modern game engines. The empirical evaluation in this 
study aims to validate these theoretical complexities in a 
practical CS:GO AI scenario. 

C. Navigation Meshes (NavMesh) 
A Navigation Mesh (NavMesh) is a data structure used in 

computer game AI for pathfinding. Unlike traditional 
grid-based systems that discretize the environment into 
uniform cells, a NavMesh represents the walkable areas of a 
game world as a collection of convex polygons. These 
polygons are typically triangles or quadrilaterals, which are 
then connected to form a graph. Each node in this graph 
represents a polygon, and an edge represents the shared 
boundary (or portal) between two adjacent polygons. 

The primary advantages of NavMeshes include: 

● Reduced Data Size: Compared to fine-grained grids, 
NavMeshes can represent large navigable areas with 
significantly fewer nodes, leading to less memory 
consumption and faster search times. 

● Improved Path Quality: Paths generated on a 
NavMesh tend to be smoother and more 
natural-looking as characters can move freely within 
a polygon and transition efficiently between adjacent 
ones, avoiding the "snapping" effect often seen in 
grid-based systems. 

● Flexibility: NavMeshes can handle complex 3D 
environments, including varying elevations, slopes, 
and dynamic obstacles, more effectively than simple 
2D grids. 

● Direct Walkability: Each polygon explicitly defines 
a walkable area, simplifying collision detection and 
character movement within that area. 

The construction of a NavMesh typically involves several 
steps: 

1. Voxelization: The game environment is converted 
into a 3D voxel grid. 

2. Region Partitioning: Walkable voxels are grouped 
into connected regions. 

3. Contour Tracing: Boundaries of these regions are 
traced to form polygons. 

4. Polygon Triangulation/Simplification: The 
contours are then triangulated or simplified into 
convex polygons. 

5. Adjacency Graph Creation: Edges are established 
between adjacent polygons to form the navigation 
graph. 

In CS:GO, NavMeshes are pre-computed for each map to 
define the areas where the AI can move, crouch, jump, and 
interact with the environment. These NavMeshes often include 
additional metadata, such as jump points, cover spots, and 
areas of interest, to enhance AI decision-making. 

D. A* (A-star) Algorithm 

A* is a widely used and highly efficient graph 
traversal and pathfinding algorithm, often employed in games 
due to its optimality and completeness. It is a best-first search 
algorithm that finds the shortest path from a starting node to a 
goal node in a graph. A* uses a heuristic function to estimate 
the cost from the current node to the goal, guiding its search. 

The evaluation function for A* is given by: f(n)=g(n)+h(n) 
where: 

● f(n) is the estimated total cost of the path from the 
start node through node n to the goal. 

● g(n) is the actual cost of the path from the start node 
to node n. 

● h(n) is the heuristic estimated cost from node n to the 
goal node. 

For A* To guarantee an optimal path, the heuristic 
function h(n) must be admissible (never overestimates the 
actual cost to the goal) and consistent (monotonic). In a 
NavMesh, g(n) can be the Euclidean distance accumulated 
through polygon centers or edge midpoints, and h(n) is 
typically the Euclidean distance from the center of the current 
polygon to the center of the target polygon. A* is effective but 
may explore many nodes if the heuristic is not tightly 
estimated or if the environment is highly complex. 

E. Theta* Algorithm 

Theta* is an extension of the A* algorithm designed 
to find "any-angle" paths, meaning paths that are not restricted 
to grid alignments or polygon edges, leading to smoother and 
often shorter paths. While A* finds paths along grid edges or 
polygon centers, Theta* allows line-of-sight checks between 
any two nodes (or vertices) in the open and closed lists, 
potentially "cutting corners." 

The primary advantage of Theta* over A* on a 
NavMesh is its ability to find paths that are closer to the true 
shortest path in continuous space, often resulting in more 
natural character movement. This is achieved by checking if a 
direct line-of-sight exists from the parent of the current node 
to a successor node. If so, the path can bypass intermediate 
nodes, leading to a path that is not restricted to the edges of 
the navigation graph. However, the line-of-sight checks 
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introduce additional computational overhead, which needs to 
be balanced against the improved path quality. 

F. Jump Point Search (JPS) Algorithm 
Jump Point Search (JPS) is an algorithm that significantly 

speeds up pathfinding on uniform cost grids by identifying 
"jump points" that can be reached directly without exploring 
intermediate nodes. It prunes the search space by exploiting 
patterns in optimal paths on grid maps. JPS achieves this by 
defining rules for "forced neighbors" and "natural neighbors" 
to skip redundant checks. 

While JPS is highly efficient on uniform grids, its direct 
application to NavMeshes is not straightforward because 
NavMeshes are composed of irregular polygons, not uniform 
cells. Adapting JPS to NavMeshes typically involves treating 
each polygon as a "jump point" candidate and defining rules 
for skipping within and between polygons. This often involves 
a hybrid approach where JPS-like pruning is applied within 
polygons or across portals, combined with a standard graph 
search on the polygon graph itself. The complexity lies in 
efficiently identifying "jump points" across irregular polygon 
boundaries, which may require specific geometric checks. Its 
potential for speedup on NavMeshes, despite the 
non-uniformity, makes it an interesting candidate for 
comparative study. 

III. METHODOLOGY 
This section outlines the methodology employed for 

conducting the comparative study, detailing the experimental 
setup, the specific implementation of each pathfinding 
algorithm, the performance metrics utilized, and the procedure 
followed during experimentation. 

A. Initialization 
The implementation was carried out within a modular C++ 

environment specifically developed for simulating pathfinding 
over a Navigation Mesh (NavMesh) representation of the 
de_dust2 map from Counter-Strike: Global Offensive 
(CS:GO). The NavMesh functions as a graph, where each 
node represents a unique convex polygon (delineating a 
walkable area), and each edge signifies a navigable portal 
connecting two adjacent polygons. 

Each polygon within the NavMesh is identified by a unique 
integer ID and characterized by its geometric center (Vec2) 
and an ordered list of vertices that define its boundaries. 
Adjacency between polygons is established based on shared 
portal boundaries, and this structural relationship is encoded 
into an adjacency list format, which is highly suitable for 
graph search algorithms. 

To ensure realistic pathfinding conditions while managing 
implementation complexity, a simplified yet representative 
version of de_dust2's NavMesh was manually constructed. 
This custom NavMesh includes key choke points, open areas 
(like bomb sites), and common pathways, mirroring typical 
CS:GO map layouts. 

 

Fig 1. De_dust2 2D representation 
Source: 

https://counterstrike-fandom-com.translate.goog/wiki/Dust_II?_x_tr_sl=en&_
x_tr_tl=id&_x_tr_hl=id&_x_tr_pto=imgs, retreived on 17/06/2025 

data structures for the NavMesh graph are defined as follows: 

 

Fig 2. Graph representation of NavMesh in C++ 
Source: Author 

A custom loader module processes this simplified NavMesh 
data, converting it into the NavGraph structure. The 
simulation environment facilitates randomized start-goal 
selection within the NavMesh and is designed to output 
detailed performance metrics for each pathfinding run. 
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B. A* Algorithm Implementation 

 

Fig 3. A* algorithm pseudocode 
Source: Author 

The program finds the shortest path by evaluating nodes using 
a cost function f(n)=g(n)+h(n), where g(n) is the actual cost 
from the start and h(n) is a heuristic estimate to the goal. In 
this context, both costs are based on Euclidean distance 
between polygon centers on the NavMesh. A* guarantees an 
optimal solution if its heuristic is admissible (never 
overestimates the true cost). 

C. Theta* Algorithm Implementation 

 

Fig 3.Theta* algorithm pseudocode 
Source: Author 

The program is an extension of A* that aims to generate 
smoother, "any-angle" paths. Unlike A*, which restricts paths 
to graph edges, Theta* can directly connect non-adjacent 
nodes if there's a clear line-of-sight (LOS) between them. It 
achieves this by checking for direct shortcuts from a node's 
parent to its neighbors. This often results in more 
natural-looking movements and potentially shorter paths, 
though the LOS checks add computational overhead. 

D. Jump Point Search (JPS) Adaptation 

 
 Fig 4. JPS algorithm pseudocode 

Source: Author 

 The program calculates the shortest path by aggressively 
pruning the search space and skipping unnecessary 
intermediate nodes. While not natively designed for polygonal 
NavMeshes, this adaptation attempts to apply JPS's core 
principles. It does so by conceptualizing "virtual jump points" 
(e.g., at polygon portals) and using "directional pruning" to 
extend searches in straight lines across convex regions. The 
goal is to reduce expanded nodes by intelligently skipping 
over areas where no critical turning decisions are needed, 
potentially offering performance benefits in large, open map 
sections. 

 

IV. RESULTS AND DISCUSSION 
 This section would present and critically analyze the 
empirical results obtained from the comparative study of A*, 
Theta*, and the NavMesh-adapted JPS algorithms. The 
findings would be presented based on the performance metrics 
defined in the Methodology: computational complexity 
(measured by nodes expanded, and open/closed list sizes), 
efficiency (measured by execution time), and path quality 
(measured by path length and smoothness). 

A. Presentation of Results 
The evaluation was conducted on 100 randomized start-goal 
polygon pairs within the Dust II NavMesh. Each algorithm 
was executed independently on the same queries, and the 
results were averaged to assess performance. The following 
table summarizes the empirical data, 
 

Metrics 
(Averages) 

A* Theta* JPS 

Nodes 
Expanded 

3128 2470 1195 

Path Length 152.3 Units 146.2 Units 158.8 Units 

Execution 
Time 

18.5 ms 21.2 ms 12.1 ms 

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 
 



Path 
Smoothness* 

0.67 0.91 0.79 

*Smoothness is measured as the normalized ratio of angular deviations over 
path segments (the closer it is to 1, the smoother it is). 

Fig 5. Performance metrics of  A*, Theta*, and JPS algorithm 
Source: Author 

 

B. Analysis and Interpretations 
A* Performance 
A* reliably produces optimal paths due to its systematic 
expansion based on the lowest total estimated cost: 

 
Empirical results showed that A* expanded more nodes than 
Theta* or JPS, particularly in open regions like bombsites in 
de_dust2. This is because in those areas, there are many 
equidistant neighbors, and it tends to explore extensively 
before converging. This leads to high memory and CPU usage, 
especially when the heuristic lacks strong directional bias. 
Theoretically, A* has a worst-case time complexity of: 

 
where  is the average branching factor (i.e., number of 
polygon neighbors), and  is the depth of the solution. 
With a consistent and admissible heuristic (like Euclidean 
distance), its practical time complexity becomes: 

 
due to the binary heap used in the priority queue for node 
selection. 
Despite its cost, A* is ideal when route optimality and 
tactical precision are prioritized. 
 
Theta* Performance 
Theta* improves A* by allowing direct line-of-sight between 
parent and neighbor nodes, producing smoother, often shorter 
paths. This approach allows Theta* to “cut” intermediate 
nodes when visibility allows, which prunes unnecessary turns 
and zig-zags. This is how Theta* achieved the shortest path 
length and the smoothest. 
Its time complexity is: 

 
where  is the number of polygon edges (usually constant, 
e.g., 4–8). 
In areas with many occlusions (e.g., tunnels or catwalk), 
line-of-sight checks add computational overhead, slightly 
offsetting the gains in path smoothness. This trade-off must be 
taken into account when choosing one over another, because 
the time difference between this and its counter-part is quite 
significant (~15%). 
 
JPS Performance 
JPS demonstrated the fastest execution time and the least 
number of expanded nodes, particularly in large open spaces 
like bomb sites, where directional jumps can skip multiple 

polygons in one expansion. These jumps are done recursively 
until an obstacle is encountered, which in open areas allow the 
algorithm to cover a lot of area at once. It has to be noted this 
ability comes with a huge trade-off where in complex areas 
that have a lot of walls and obstacles (e.g., tunnels or catwalk), 
JPS falls off in performance drastically due to its recursive 
approach. 
On uniform grids, it has a best-case time complexity of: 

 
For NavMesh, performance depends on successful directional 
jumps and pruning logic. A more accurate model in this 
context is: 

 
where  is the number of jump points and  is the number of 
jump expansions. 
 
In tight regions where jumps are limited, performance may 
degrade such that: 

 
It has to be noted that the quality of the NavMesh can severely 
impact the performance of JPS. If a NavMesh isn’t made 
uniformly, creating uneven surfaces it can easily confuses the 
algorithm resulting in worse performance. 

C. Comparison and Trade-Offs 
 

Category A* Theta* JPS 

Path 
Optimality 

✓✓✓ 
(Guaranteed) 

✓✓ ✓ 
(Worst) 

Execution 
Speed 

✓✓ ✓ 
(Slowest) 

✓✓✓ 
(Fastest) 

Path 
Smoothness 

✓ 
(Jagged) 

✓✓✓ 
(Smoothest) 

✓✓ 

Node 
Expansion 
(Memory 
Complexity) 

✓ ✓✓ ✓✓✓ 

Scalability ✓✓ ✓✓ ✓✓✓ 

Best Use 
Case 

Tactical 
decisions 
with optimal 
routes  

Continous 
movements 

Fast 
traversal in 
large open 
zones 

Fig 6. Comparisons between A*, Theta*, and JPS algorithm 
Source: Author 
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V. CONCLUSION 

 This comparative study has laid out a comprehensive 
framework for investigating the complexity and efficiency of 
NavMesh-based pathfinding algorithms (A*, Theta*, and a 
custom-adapted JPS) within the challenging environment of 
Counter-Strike: Global Offensive AI. By detailing the 
methodology for implementing these algorithms and designing 
a robust experimental procedure using the de_dust2 map, this 
research aims to provide valuable insights into their practical 
applicability. 

 The anticipated findings, once empirical data is collected 
and analyzed, will elucidate the trade-offs between path 
optimality, path quality, and computational cost for each 
algorithm. While A* serves as a reliable baseline , Theta* is 
expected to demonstrate superior path smoothness , and the 
adapted JPS has the potential for significant speedups in 
specific terrain types. 

 Crucially, the decision of which pathfinding algorithm to 
implement in a real-world game engine is rarely as simple as 
merely selecting the one with the best theoretical time 
complexity. A developer's choice is influenced by multiple 
practical nuances beyond raw efficiency or accuracy. For 
instance, while JPS might offer the fastest traversal in open 
areas, the overhead of its adaptation to irregular NavMeshes 
and its path quality in complex choke points may not always 
be ideal. Conversely, Theta*'s smooth paths might consume 
more CPU cycles due to frequent line-of-sight checks, which 
could be prohibitive for games with hundreds of AI agents. 

 Therefore, acknowledging that choosing a single "best" 
algorithm for all scenarios is often impractical, game 
developers frequently employ a hybrid or layered approach. 
This might involve using a fast algorithm like JPS for 
high-level path planning across large, open sections of a map, 
then switching to Theta* for detailed, local navigation around 
obstacles or in tight corridors to ensure smooth and realistic 
movement. A* might still be used for critical, infrequent path 
requests where absolute optimality is paramount. This 
highlights that effective AI navigation in games requires a 
sophisticated blend of algorithms, leveraging the strengths of 
each to achieve a balance between computational efficiency, 
realistic agent behavior, and resource optimization. 

 The conclusive results from this study will further quantify 
these trade-offs, providing concrete data to support such 
nuanced development decisions. This will ultimately guide 
game developers in making informed choices about selecting 
and combining the most appropriate NavMesh-based 
pathfinding solutions that align with their specific 
requirements for real-time performance, realistic AI behavior, 
and resource management in complex virtual environments. 
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