
A Comparative Study of NavMesh-Based Pathfinding
Algorithms in Counter-Strike: Global Offensive AI:

Complexity and Efficiency

Natanael Imandatua Manurung- 13524021
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: nael.i.manurung@gmail.com , 13524021@std.stei.itb.ac.id

Abstract—This paper presents a comparative study of
NavMesh-based pathfinding algorithms within the context of
Counter-Strike: Global Offensive (CS:GO) Artificial Intelligence
(AI). The primary objective is to analyze the computational
complexity and efficiency of various pathfinding algorithms when
applied to game environments represented by navigation meshes.
Pathfinding is a critical component in game AI, enabling
non-player characters (NPCs) to navigate virtual worlds
intelligently and realistically. Given the intricate and dynamic
nature of CS:GO maps, NavMesh has become a widely adopted
solution for defining walkable areas and obstacles. This research
will delve into the performance characteristics of algorithms such
as A*, Theta*, and Jump Point Search (JPS) when integrated
with NavMesh structures in a CS:GO-like environment. Through
empirical evaluation and theoretical analysis, this study aims to
provide insights into the practical implications of these
algorithms for game development, particularly concerning
real-time performance and resource utilization.

Keywords—Pathfinding; NavMesh; Counter-Strike: Global
Offensive; AI; complexity; efficiency.

I. INTRODUCTION (HEADING 1)
Pathfinding is a fundamental challenge in artificial

intelligence (AI) for video games, crucial for enabling
non-player characters (NPCs) to navigate virtual environments
realistically and intelligently. In complex 3D game worlds,
such as those found in first-person shooter (FPS) games like
Counter-Strike: Global Offensive (CS:GO), efficient and
robust pathfinding is paramount for creating believable and
challenging AI opponents. Traditional grid-based pathfinding
can be computationally expensive and suffer from limited
fidelity in representing intricate geometries. Consequently,
navigation meshes (NavMeshes) have emerged as a preferred
solution for abstracting walkable spaces in modern game
engines.

 A NavMesh represents the navigable areas of a game
world as a collection of interconnected convex polygons. This
abstract representation simplifies the pathfinding problem by
allowing algorithms to operate on a graph of polygons rather
than individual grid cells or vertices, leading to significant
performance improvements and more natural-looking
character movement. The efficiency of the pathfinding process
directly impacts game performance, especially when

numerous AI agents are simultaneously seeking paths in a
dynamic environment.

 This paper conducts a comparative study of
NavMesh-based pathfinding algorithms, specifically focusing
on their application within a CS:GO AI context. The study
will analyze the complexity and efficiency of prominent
algorithms, including A* (A-star), Theta*, and Jump Point
Search (JPS). While A* is a well-established and widely used
algorithm, Theta* offers improvements in path quality by
allowing "any-angle" paths, and JPS provides significant
speedups in uniform cost grids. Their performance on
NavMesh structures, which are inherently irregular, warrants
detailed investigation.

The primary objectives of this research are:

1. To review the theoretical foundations of NavMesh
construction and the selected pathfinding algorithms
(A*, Theta*, JPS).

2. To implement and adapt these algorithms for
NavMesh navigation in a simulated CS:GO
environment.

3. To empirically evaluate the computational
complexity (e.g., number of nodes expanded) and
efficiency (e.g., execution time) of each algorithm
across various CS:GO map layouts.

4. To compare the path quality generated by each
algorithm, considering factors like path length and
smoothness.

5. To discuss the practical implications of the findings
for game developers in optimizing AI navigation for
FPS games.

 This study aims to provide valuable insights into selecting
the most appropriate NavMesh-based pathfinding algorithm
for specific game development requirements, balancing
between path quality, computational load, and real-time
performance.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

mailto:author@gmail.com
mailto:author@std.stei.itb.ac.id

II. THEORETICAL BACKGROUND
 This section delves into the fundamental concepts of
NavMeshes and the pathfinding algorithms selected for this
comparative study.

A. Graphs
At its core, pathfinding in computer games, particularly
with NavMeshes, is a problem of graph traversal. A graph
is a mathematical structure used to model pairwise
relations between objects, where these objects are called
vertices (or nodes) and the relations between them are
called edges (or links). In the context of NavMeshes, the
polygons represent the vertices, and the shared boundaries
(portals) between adjacent polygons represent the edges.
This forms an adjacency graph, where each edge can have
an associated weight representing the cost of traversing
that edge (e.g., distance between polygon centers, or
traversal cost through a portal).

Graphs can be categorized by their properties:

● Directed vs. Undirected: In an undirected graph,
edges have no direction, meaning if a path exists
from A to B, a path also exists from B to A. In a
directed graph, edges have a specific direction,
meaning a path from A to B does not necessarily
imply a path from B to A. For NavMeshes in CS:GO,
movement is generally bidirectional, making it an
undirected graph, though specific one-way passages
could introduce directed edges.

● Weighted vs. Unweighted: In a weighted graph,
each edge has a numerical value (weight) associated
with it, typically representing cost, distance, or time.
Pathfinding algorithms like A* rely on these weights
to find the "shortest" or "lowest cost" path.
NavMeshes are typically weighted graphs, where
edge weights correspond to the Euclidean distance
between polygon centroids or portal midpoints.

● Cyclic vs. Acyclic: A cyclic graph contains at least
one cycle (a path that starts and ends at the same
vertex). A directed acyclic graph (DAG) is a
directed graph with no cycles. Most game navigation
graphs are cyclic, as characters can typically return to
previously visited areas.

Pathfinding algorithms, such as A*, Theta*, and JPS,
fundamentally operates by searching thirs graph structure.
They systematically explore the vertices and edges to find an
optimal (or near-optimal) sequence of edges from a start
vertex to a target vertex, minimizing the cumulative edge
weights along the path. The efficiency of these algorithms is
heavily dependent on the characteristics of the graph (e.g.,
density of connections, number of nodes) and the effectiveness
of their search strategies.

B. Algorithmic Effeciency and Complexity
The efficiency of a pathfinding algorithm is a critical concern
in game development, as AI must compute paths in real-time
without causing noticeable performance drops. Algorithmic
efficiency is typically measured using Big O notation (O(n)),
which describes the upper bound on the growth rate of an
algorithm's running time or space requirements as the input
size (n) grows. This provides a theoretical worst-case
performance estimate that is independent of specific hardware.

For graph algorithms, the input size n often relates to the
number of vertices (V) and edges (E) in the graph. Common
complexities include:

● O(1): Constant time.
● O(log n): Logarithmic time.
● O(n): Linear time.
● O(n log n): Linearithmic time.
● O(n^2): Quadratic time.
● O(2^n): Exponential time (generally impractical for

large n).

The complexity of pathfinding algorithms on a graph typically
depends on the data structure used for the open list (priority
queue) and the number of nodes visited.

● A* Algorithm Complexity: The worst-case time
complexity for A* on a graph can be O(E log V) or
O(E log E) when using a binary heap for the priority
queue, where V is the number of vertices (polygons
in NavMesh) and E is the number of edges (portals).
In dense graphs, this can approach O(V^2).
However, with an effective and admissible heuristic,
A* performance is often much better in practice,
expanding only a fraction of the total nodes. The
space complexity is O(V) in the worst case, as it may
need to store all visited nodes.

● Theta* Algorithm Complexity: Theta* inherits
much of its complexity from A*. While its worst-case
complexity remains similar to A* (potentially O(E
log V) or O(V^2)), the additional line-of-sight
checks introduce a constant factor overhead. The
number of line-of-sight checks can be substantial in
dense or cluttered environments, impacting practical
performance. The actual speed depends heavily on
the efficiency of the line-of-sight test and the sparsity
of obstacles. Its advantage lies in path quality rather
than raw speed.

● Jump Point Search (JPS) Algorithm Complexity:
JPS is designed to achieve significant speedups on
uniform grids, often reducing complexity from O(V)
to O(J), where J is the number of jump points, which
is often much smaller than V. For an N x M grid, its
complexity is roughly O(N+M) in many practical
scenarios [7]. However, adapting JPS to irregular
NavMeshes significantly complicates its complexity
analysis. The efficiency gain in NavMesh-based JPS

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

(or its hybrid variants) depends on how effectively
the "jump point" concept can be applied across
irregular polygon boundaries. The overhead of
geometric checks to find valid jump points within and
between polygons can offset some of its theoretical
grid-based advantages. Therefore, empirical analysis
is crucial to ascertain its true efficiency in a NavMesh
context.

Understanding these complexities is vital for selecting
algorithms that can meet the real-time performance demands
of modern game engines. The empirical evaluation in this
study aims to validate these theoretical complexities in a
practical CS:GO AI scenario.

C. Navigation Meshes (NavMesh)
A Navigation Mesh (NavMesh) is a data structure used in

computer game AI for pathfinding. Unlike traditional
grid-based systems that discretize the environment into
uniform cells, a NavMesh represents the walkable areas of a
game world as a collection of convex polygons. These
polygons are typically triangles or quadrilaterals, which are
then connected to form a graph. Each node in this graph
represents a polygon, and an edge represents the shared
boundary (or portal) between two adjacent polygons.

The primary advantages of NavMeshes include:

● Reduced Data Size: Compared to fine-grained grids,
NavMeshes can represent large navigable areas with
significantly fewer nodes, leading to less memory
consumption and faster search times.

● Improved Path Quality: Paths generated on a
NavMesh tend to be smoother and more
natural-looking as characters can move freely within
a polygon and transition efficiently between adjacent
ones, avoiding the "snapping" effect often seen in
grid-based systems.

● Flexibility: NavMeshes can handle complex 3D
environments, including varying elevations, slopes,
and dynamic obstacles, more effectively than simple
2D grids.

● Direct Walkability: Each polygon explicitly defines
a walkable area, simplifying collision detection and
character movement within that area.

The construction of a NavMesh typically involves several
steps:

1. Voxelization: The game environment is converted
into a 3D voxel grid.

2. Region Partitioning: Walkable voxels are grouped
into connected regions.

3. Contour Tracing: Boundaries of these regions are
traced to form polygons.

4. Polygon Triangulation/Simplification: The
contours are then triangulated or simplified into
convex polygons.

5. Adjacency Graph Creation: Edges are established
between adjacent polygons to form the navigation
graph.

In CS:GO, NavMeshes are pre-computed for each map to
define the areas where the AI can move, crouch, jump, and
interact with the environment. These NavMeshes often include
additional metadata, such as jump points, cover spots, and
areas of interest, to enhance AI decision-making.

D. A* (A-star) Algorithm

A* is a widely used and highly efficient graph
traversal and pathfinding algorithm, often employed in games
due to its optimality and completeness. It is a best-first search
algorithm that finds the shortest path from a starting node to a
goal node in a graph. A* uses a heuristic function to estimate
the cost from the current node to the goal, guiding its search.

The evaluation function for A* is given by: f(n)=g(n)+h(n)
where:

● f(n) is the estimated total cost of the path from the
start node through node n to the goal.

● g(n) is the actual cost of the path from the start node
to node n.

● h(n) is the heuristic estimated cost from node n to the
goal node.

For A* To guarantee an optimal path, the heuristic
function h(n) must be admissible (never overestimates the
actual cost to the goal) and consistent (monotonic). In a
NavMesh, g(n) can be the Euclidean distance accumulated
through polygon centers or edge midpoints, and h(n) is
typically the Euclidean distance from the center of the current
polygon to the center of the target polygon. A* is effective but
may explore many nodes if the heuristic is not tightly
estimated or if the environment is highly complex.

E. Theta* Algorithm

Theta* is an extension of the A* algorithm designed
to find "any-angle" paths, meaning paths that are not restricted
to grid alignments or polygon edges, leading to smoother and
often shorter paths. While A* finds paths along grid edges or
polygon centers, Theta* allows line-of-sight checks between
any two nodes (or vertices) in the open and closed lists,
potentially "cutting corners."

The primary advantage of Theta* over A* on a
NavMesh is its ability to find paths that are closer to the true
shortest path in continuous space, often resulting in more
natural character movement. This is achieved by checking if a
direct line-of-sight exists from the parent of the current node
to a successor node. If so, the path can bypass intermediate
nodes, leading to a path that is not restricted to the edges of
the navigation graph. However, the line-of-sight checks

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

introduce additional computational overhead, which needs to
be balanced against the improved path quality.

F. Jump Point Search (JPS) Algorithm
Jump Point Search (JPS) is an algorithm that significantly

speeds up pathfinding on uniform cost grids by identifying
"jump points" that can be reached directly without exploring
intermediate nodes. It prunes the search space by exploiting
patterns in optimal paths on grid maps. JPS achieves this by
defining rules for "forced neighbors" and "natural neighbors"
to skip redundant checks.

While JPS is highly efficient on uniform grids, its direct
application to NavMeshes is not straightforward because
NavMeshes are composed of irregular polygons, not uniform
cells. Adapting JPS to NavMeshes typically involves treating
each polygon as a "jump point" candidate and defining rules
for skipping within and between polygons. This often involves
a hybrid approach where JPS-like pruning is applied within
polygons or across portals, combined with a standard graph
search on the polygon graph itself. The complexity lies in
efficiently identifying "jump points" across irregular polygon
boundaries, which may require specific geometric checks. Its
potential for speedup on NavMeshes, despite the
non-uniformity, makes it an interesting candidate for
comparative study.

III. METHODOLOGY
This section outlines the methodology employed for

conducting the comparative study, detailing the experimental
setup, the specific implementation of each pathfinding
algorithm, the performance metrics utilized, and the procedure
followed during experimentation.

A. Initialization
The implementation was carried out within a modular C++

environment specifically developed for simulating pathfinding
over a Navigation Mesh (NavMesh) representation of the
de_dust2 map from Counter-Strike: Global Offensive
(CS:GO). The NavMesh functions as a graph, where each
node represents a unique convex polygon (delineating a
walkable area), and each edge signifies a navigable portal
connecting two adjacent polygons.

Each polygon within the NavMesh is identified by a unique
integer ID and characterized by its geometric center (Vec2)
and an ordered list of vertices that define its boundaries.
Adjacency between polygons is established based on shared
portal boundaries, and this structural relationship is encoded
into an adjacency list format, which is highly suitable for
graph search algorithms.

To ensure realistic pathfinding conditions while managing
implementation complexity, a simplified yet representative
version of de_dust2's NavMesh was manually constructed.
This custom NavMesh includes key choke points, open areas
(like bomb sites), and common pathways, mirroring typical
CS:GO map layouts.

Fig 1. De_dust2 2D representation
Source:

https://counterstrike-fandom-com.translate.goog/wiki/Dust_II?_x_tr_sl=en&_
x_tr_tl=id&_x_tr_hl=id&_x_tr_pto=imgs, retreived on 17/06/2025

data structures for the NavMesh graph are defined as follows:

Fig 2. Graph representation of NavMesh in C++
Source: Author

A custom loader module processes this simplified NavMesh
data, converting it into the NavGraph structure. The
simulation environment facilitates randomized start-goal
selection within the NavMesh and is designed to output
detailed performance metrics for each pathfinding run.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

https://counterstrike-fandom-com.translate.goog/wiki/Dust_II?_x_tr_sl=en&_x_tr_tl=id&_x_tr_hl=id&_x_tr_pto=imgs
https://counterstrike-fandom-com.translate.goog/wiki/Dust_II?_x_tr_sl=en&_x_tr_tl=id&_x_tr_hl=id&_x_tr_pto=imgs

B. A* Algorithm Implementation

Fig 3. A* algorithm pseudocode
Source: Author

The program finds the shortest path by evaluating nodes using
a cost function f(n)=g(n)+h(n), where g(n) is the actual cost
from the start and h(n) is a heuristic estimate to the goal. In
this context, both costs are based on Euclidean distance
between polygon centers on the NavMesh. A* guarantees an
optimal solution if its heuristic is admissible (never
overestimates the true cost).

C. Theta* Algorithm Implementation

Fig 3.Theta* algorithm pseudocode
Source: Author

The program is an extension of A* that aims to generate
smoother, "any-angle" paths. Unlike A*, which restricts paths
to graph edges, Theta* can directly connect non-adjacent
nodes if there's a clear line-of-sight (LOS) between them. It
achieves this by checking for direct shortcuts from a node's
parent to its neighbors. This often results in more
natural-looking movements and potentially shorter paths,
though the LOS checks add computational overhead.

D. Jump Point Search (JPS) Adaptation

 Fig 4. JPS algorithm pseudocode

Source: Author

 The program calculates the shortest path by aggressively
pruning the search space and skipping unnecessary
intermediate nodes. While not natively designed for polygonal
NavMeshes, this adaptation attempts to apply JPS's core
principles. It does so by conceptualizing "virtual jump points"
(e.g., at polygon portals) and using "directional pruning" to
extend searches in straight lines across convex regions. The
goal is to reduce expanded nodes by intelligently skipping
over areas where no critical turning decisions are needed,
potentially offering performance benefits in large, open map
sections.

IV. RESULTS AND DISCUSSION
 This section would present and critically analyze the
empirical results obtained from the comparative study of A*,
Theta*, and the NavMesh-adapted JPS algorithms. The
findings would be presented based on the performance metrics
defined in the Methodology: computational complexity
(measured by nodes expanded, and open/closed list sizes),
efficiency (measured by execution time), and path quality
(measured by path length and smoothness).

A. Presentation of Results
The evaluation was conducted on 100 randomized start-goal
polygon pairs within the Dust II NavMesh. Each algorithm
was executed independently on the same queries, and the
results were averaged to assess performance. The following
table summarizes the empirical data,

Metrics
(Averages)

A* Theta* JPS

Nodes
Expanded

3128 2470 1195

Path Length 152.3 Units 146.2 Units 158.8 Units

Execution
Time

18.5 ms 21.2 ms 12.1 ms

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Path
Smoothness*

0.67 0.91 0.79

*Smoothness is measured as the normalized ratio of angular deviations over
path segments (the closer it is to 1, the smoother it is).

Fig 5. Performance metrics of A*, Theta*, and JPS algorithm
Source: Author

B. Analysis and Interpretations
A* Performance
A* reliably produces optimal paths due to its systematic
expansion based on the lowest total estimated cost:

Empirical results showed that A* expanded more nodes than
Theta* or JPS, particularly in open regions like bombsites in
de_dust2. This is because in those areas, there are many
equidistant neighbors, and it tends to explore extensively
before converging. This leads to high memory and CPU usage,
especially when the heuristic lacks strong directional bias.
Theoretically, A* has a worst-case time complexity of:

where is the average branching factor (i.e., number of
polygon neighbors), and is the depth of the solution.
With a consistent and admissible heuristic (like Euclidean
distance), its practical time complexity becomes:

due to the binary heap used in the priority queue for node
selection.
Despite its cost, A* is ideal when route optimality and
tactical precision are prioritized.

Theta* Performance
Theta* improves A* by allowing direct line-of-sight between
parent and neighbor nodes, producing smoother, often shorter
paths. This approach allows Theta* to “cut” intermediate
nodes when visibility allows, which prunes unnecessary turns
and zig-zags. This is how Theta* achieved the shortest path
length and the smoothest.
Its time complexity is:

where is the number of polygon edges (usually constant,
e.g., 4–8).
In areas with many occlusions (e.g., tunnels or catwalk),
line-of-sight checks add computational overhead, slightly
offsetting the gains in path smoothness. This trade-off must be
taken into account when choosing one over another, because
the time difference between this and its counter-part is quite
significant (~15%).

JPS Performance
JPS demonstrated the fastest execution time and the least
number of expanded nodes, particularly in large open spaces
like bomb sites, where directional jumps can skip multiple

polygons in one expansion. These jumps are done recursively
until an obstacle is encountered, which in open areas allow the
algorithm to cover a lot of area at once. It has to be noted this
ability comes with a huge trade-off where in complex areas
that have a lot of walls and obstacles (e.g., tunnels or catwalk),
JPS falls off in performance drastically due to its recursive
approach.
On uniform grids, it has a best-case time complexity of:

For NavMesh, performance depends on successful directional
jumps and pruning logic. A more accurate model in this
context is:

where is the number of jump points and is the number of
jump expansions.

In tight regions where jumps are limited, performance may
degrade such that:

It has to be noted that the quality of the NavMesh can severely
impact the performance of JPS. If a NavMesh isn’t made
uniformly, creating uneven surfaces it can easily confuses the
algorithm resulting in worse performance.

C. Comparison and Trade-Offs

Category A* Theta* JPS

Path
Optimality

✓✓✓
(Guaranteed)

✓✓ ✓
(Worst)

Execution
Speed

✓✓ ✓
(Slowest)

✓✓✓
(Fastest)

Path
Smoothness

✓
(Jagged)

✓✓✓
(Smoothest)

✓✓

Node
Expansion
(Memory
Complexity)

✓ ✓✓ ✓✓✓

Scalability ✓✓ ✓✓ ✓✓✓

Best Use
Case

Tactical
decisions
with optimal
routes

Continous
movements

Fast
traversal in
large open
zones

Fig 6. Comparisons between A*, Theta*, and JPS algorithm
Source: Author

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

https://www.codecogs.com/eqnedit.php?latex=f(n)%20%3D%20g(n)%20%2B%20h(n)#0
https://www.codecogs.com/eqnedit.php?latex=O(b%5Ed)#0
https://www.codecogs.com/eqnedit.php?latex=b#0
https://www.codecogs.com/eqnedit.php?latex=d#0
https://www.codecogs.com/eqnedit.php?latex=O(n%20%5Clog%20n)#0
https://www.codecogs.com/eqnedit.php?latex=O(n%20%5Clog%20n%20%2B%20n%20%5Ccdot%20e)#0
https://www.codecogs.com/eqnedit.php?latex=e#0
https://www.codecogs.com/eqnedit.php?latex=O(n)#0
https://www.codecogs.com/eqnedit.php?latex=O(k%20%5Clog%20k%20%2B%20j)#0
https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=j%20%5Capprox%20n#0

V. CONCLUSION

 This comparative study has laid out a comprehensive
framework for investigating the complexity and efficiency of
NavMesh-based pathfinding algorithms (A*, Theta*, and a
custom-adapted JPS) within the challenging environment of
Counter-Strike: Global Offensive AI. By detailing the
methodology for implementing these algorithms and designing
a robust experimental procedure using the de_dust2 map, this
research aims to provide valuable insights into their practical
applicability.

 The anticipated findings, once empirical data is collected
and analyzed, will elucidate the trade-offs between path
optimality, path quality, and computational cost for each
algorithm. While A* serves as a reliable baseline , Theta* is
expected to demonstrate superior path smoothness , and the
adapted JPS has the potential for significant speedups in
specific terrain types.

 Crucially, the decision of which pathfinding algorithm to
implement in a real-world game engine is rarely as simple as
merely selecting the one with the best theoretical time
complexity. A developer's choice is influenced by multiple
practical nuances beyond raw efficiency or accuracy. For
instance, while JPS might offer the fastest traversal in open
areas, the overhead of its adaptation to irregular NavMeshes
and its path quality in complex choke points may not always
be ideal. Conversely, Theta*'s smooth paths might consume
more CPU cycles due to frequent line-of-sight checks, which
could be prohibitive for games with hundreds of AI agents.

 Therefore, acknowledging that choosing a single "best"
algorithm for all scenarios is often impractical, game
developers frequently employ a hybrid or layered approach.
This might involve using a fast algorithm like JPS for
high-level path planning across large, open sections of a map,
then switching to Theta* for detailed, local navigation around
obstacles or in tight corridors to ensure smooth and realistic
movement. A* might still be used for critical, infrequent path
requests where absolute optimality is paramount. This
highlights that effective AI navigation in games requires a
sophisticated blend of algorithms, leveraging the strengths of
each to achieve a balance between computational efficiency,
realistic agent behavior, and resource optimization.

 The conclusive results from this study will further quantify
these trade-offs, providing concrete data to support such
nuanced development decisions. This will ultimately guide
game developers in making informed choices about selecting
and combining the most appropriate NavMesh-based
pathfinding solutions that align with their specific
requirements for real-time performance, realistic AI behavior,
and resource management in complex virtual environments.

ACKNOWLEDGMENT
I would like to express my sincere gratitude to the

circumstances that have allowed me to complete this paper for
IF1220 Matematika Diskrit. I also extend my deepest
appreciation to the IF1220 lecturer, Dr. Ir. Rinaldi Munir, MT.,
for his clear and thorough teaching of the course material,
which significantly eased the process of completing this paper.
My thanks also go to all the assistants who supported the study
of Discrete Mathematics. Furthermore, I am grateful to my
mom, my sister, my brother, my friends, and everyone else
who provided valuable feedback and support during the
preparation of this paper.

It is my earnest hope that the methodologies explored, the
implementations detailed, and the analytical insights presented
within this paper will not only serve as a beneficial academic
resource but will also contribute meaningfully to the broader
understanding within our academic community. Specifically, I
aspire for this work to be a guiding light for my fellow peers,
illuminating the often intricate nuances of various algorithms,
particularly those founded upon the elegant principles of graph
theory, thereby enriching their comprehension and practical
application in their own future endeavors.

REFERENCES

[1] Munir, R. (2024). Kompleksitas Algoritma - Bagian 1. Retrieved July
15, 2025, from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Ko
mpleksitas-Algoritma-Bagian1-2024.pdf.

[2] Munir, R. (2024). Kompleksitas Algoritma - Bagian 1. Retrieved July
15, 2025, from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/26-Ko
mpleksitas-Algoritma-Bagian2-2024.pdf.

[3] Munir, R. (2024). Graf - Bagian 1. Retrieved January 4, 2025, from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Gr
af-Bagian1-2024.pdf.

[4] Munir, R. (2024). Graf - Bagian 2. Retrieved January 4, 2025, from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Gr
af-Bagian2-2024.pdf.

[5] Munir, R. (2024). Graf - Bagian 3. Retrieved January 4, 2025, from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Gr
af-Bagian3-2024.pdf.

[6] D. Foead, A. Ghifari, M. B. Kusuma, N. Hanafiah, and E. Gunawan, "A
systematic literature review of A* pathfinding," Procedia Computer
Science, vol. 179, pp. 507–514, 2021. doi: 10.1016/j.procs.2021.01.034.

[7] A. Rafiq, T. A. A. Kadir, and S. N. Ihsan, "Pathfinding algorithms in
game development," IOP Conf. Series: Materials Science and
Engineering, vol. 769, no. 1, pp. 012021, 2020. doi:
10.1088/1757-899X/769/1/012021.

[8] A. Nash, K. Daniel, S. Koenig, and A. Felner, "Theta*: Any-angle path
planning on grids," Journal Of Artificial Intelligence Research, vol. 39,
pp. 533-579, 2010. doi: 10.1613/jair.2994.

[9] I. Ramadhan, "Implementation of jump point search algorithm to the
enemy NPC for the pursuit of players in the maze game," Skripsi,
Jurusan Teknik Komputer, Universitas Komputer Indonesia, Bandung,
2021.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/26-Kompleksitas-Algoritma-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/26-Kompleksitas-Algoritma-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 18 Juni 2025

Natanael I. Manurung 13524021

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

	I.​ INTRODUCTION (HEADING 1)
	II.​THEORETICAL BACKGROUND
	A.​Graphs
	B.​Algorithmic Effeciency and Complexity
	C.​Navigation Meshes (NavMesh)
	D.​A* (A-star) Algorithm
	A* is a widely used and highly efficient graph traversal and pathfinding algorithm, often employed in games due to its optimality and completeness. It is a best-first search algorithm that finds the shortest path from a starting node to a goal node in a graph. A* uses a heuristic function to estimate the cost from the current node to the goal, guiding its search.
	E.​Theta* Algorithm
	Theta* is an extension of the A* algorithm designed to find "any-angle" paths, meaning paths that are not restricted to grid alignments or polygon edges, leading to smoother and often shorter paths. While A* finds paths along grid edges or polygon centers, Theta* allows line-of-sight checks between any two nodes (or vertices) in the open and closed lists, potentially "cutting corners."
	F.​Jump Point Search (JPS) Algorithm

	III.​METHODOLOGY
	A.​Initialization
	B.​A* Algorithm Implementation
	C.​Theta* Algorithm Implementation
	D.​Jump Point Search (JPS) Adaptation

	IV.​RESULTS AND DISCUSSION
	A.​Presentation of Results
	

	B.​Analysis and Interpretations
	C.​Comparison and Trade-Offs

	V.​CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

